A First Course In Mathematical Logic And Set Theory Pdf
In addition, the book is ideal for introductory courses on mathematical logic and/or set theory and appropriate for upper-undergraduate transition courses with rigorous mathematical reasoning involving algebra, number theory, or analysis.
Author: Michael L. O'Leary
Publisher: John Wiley & Sons
ISBN: 9780470905883
Category: Mathematics
Page: 464
View: 885
A mathematical introduction to the theory and applications of logic and set theory with an emphasis on writing proofs Highlighting the applications and notations of basic mathematical concepts within the framework of logic and set theory, A First Course in Mathematical Logic and Set Theory introduces how logic is used to prepare and structure proofs and solve more complex problems. The book begins with propositional logic, including two-column proofs and truth table applications, followed by first-order logic, which provides the structure for writing mathematical proofs. Set theory is then introduced and serves as the basis for defining relations, functions, numbers, mathematical induction, ordinals, and cardinals. The book concludes with a primer on basic model theory with applications to abstract algebra. A First Course in Mathematical Logic and Set Theory also includes: Section exercises designed to show the interactions between topics and reinforce the presented ideas and concepts Numerous examples that illustrate theorems and employ basic concepts such as Euclid's lemma, the Fibonacci sequence, and unique factorization Coverage of important theorems including the well-ordering theorem, completeness theorem, compactness theorem, as well as the theorems of Löwenheim–Skolem, Burali-Forti, Hartogs, Cantor–Schröder–Bernstein, and König An excellent textbook for students studying the foundations of mathematics and mathematical proofs, A First Course in Mathematical Logic and Set Theory is also appropriate for readers preparing for careers in mathematics education or computer science. In addition, the book is ideal for introductory courses on mathematical logic and/or set theory and appropriate for upper-undergraduate transition courses with rigorous mathematical reasoning involving algebra, number theory, or analysis.
Set theory can be considered a unifying theory for mathematics. This book covers the fundamentals of the subject.
Author: Daniel W. Cunningham
Publisher: Cambridge University Press
ISBN: 9781107120327
Category: Mathematics
Page: 262
View: 771
Set theory can be considered a unifying theory for mathematics. This book covers the fundamentals of the subject.
Starting with symbolizing sentences and sentential connectives, this work proceeds to the rules of logical inference and sentential derivation, examines the concepts of truth and validity, and presents a series of truth tables.
Author: Patrick Suppes
Publisher: Courier Corporation
ISBN: 0486422593
Category: Mathematics
Page: 274
View: 573
Starting with symbolizing sentences and sentential connectives, this work proceeds to the rules of logical inference and sentential derivation, examines the concepts of truth and validity, and presents a series of truth tables. Subsequent topics include terms, predicates, and universal quantifiers; universal specification and laws of identity; axioms for addition; and universal generalization. 1964 edition. Index.
This self-contained text will appeal to readers from diverse fields and varying backgrounds.
Author: Joel W. Robbin
Publisher: Courier Dover Publications
ISBN: 9780486450186
Category: Mathematics
Page: 212
View: 161
This self-contained text will appeal to readers from diverse fields and varying backgrounds. Topics include 1st-order recursive arithmetic, 1st- and 2nd-order logic, and the arithmetization of syntax. Numerous exercises; some solutions. 1969 edition.
The Fourth Edition of this long-established text retains all the key features of the previous editions, covering the basic topics of a solid first course in mathematical logic.
Author: Elliott Mendelson
Publisher: CRC Press
ISBN: 0412808307
Category: Mathematics
Page: 440
View: 301
The Fourth Edition of this long-established text retains all the key features of the previous editions, covering the basic topics of a solid first course in mathematical logic. This edition includes an extensive appendix on second-order logic, a section on set theory with urlements, and a section on the logic that results when we allow models with empty domains. The text contains numerous exercises and an appendix furnishes answers to many of them. Introduction to Mathematical Logic includes: propositional logic first-order logic first-order number theory and the incompleteness and undecidability theorems of Gödel, Rosser, Church, and Tarski axiomatic set theory theory of computability The study of mathematical logic, axiomatic set theory, and computability theory provides an understanding of the fundamental assumptions and proof techniques that form basis of mathematics. Logic and computability theory have also become indispensable tools in theoretical computer science, including artificial intelligence. Introduction to Mathematical Logic covers these topics in a clear, reader-friendly style that will be valued by anyone working in computer science as well as lecturers and researchers in mathematics, philosophy, and related fields.
1. This book is above all addressed to mathematicians.
Author: Yu.I. Manin
Publisher: Springer Science & Business Media
ISBN: 9781475743852
Category: Mathematics
Page: 288
View: 497
1. This book is above all addressed to mathematicians. It is intended to be a textbook of mathematical logic on a sophisticated level, presenting the reader with several of the most significant discoveries of the last ten or fifteen years. These include: the independence of the continuum hypothe sis, the Diophantine nature of enumerable sets, the impossibility of finding an algorithmic solution for one or two old problems. All the necessary preliminary material, including predicate logic and the fundamentals of recursive function theory, is presented systematically and with complete proofs. We only assume that the reader is familiar with "naive" set theoretic arguments. In this book mathematical logic is presented both as a part of mathe matics and as the result of its self-perception. Thus, the substance of the book consists of difficult proofs of subtle theorems, and the spirit of the book consists of attempts to explain what these theorems say about the mathematical way of thought. Foundational problems are for the most part passed over in silence. Most likely, logic is capable of justifying mathematics to no greater extent than biology is capable of justifying life. 2. The first two chapters are devoted to predicate logic. The presenta tion here is fairly standard, except that semantics occupies a very domi nant position, truth is introduced before deducibility, and models of speech in formal languages precede the systematic study of syntax.
While the text provides challenging problems that engage readers in the mathematical theory of linear algebra, it is written in an accessible and simple-to-grasp fashion appropriate for junior undergraduate students.
Author: Michael L. O'Leary
Publisher: John Wiley & Sons
ISBN: 9781119437444
Category: Mathematics
Page: 464
View: 812
LINEAR ALGEBRA EXPLORE A COMPREHENSIVE INTRODUCTORY TEXT IN LINEAR ALGEBRA WITH COMPELLING SUPPLEMENTARY MATERIALS, INCLUDING A COMPANION WEBSITE AND SOLUTIONS MANUALS Linear Algebra delivers a fulsome exploration of the central concepts in linear algebra, including multidimensional spaces, linear transformations, matrices, matrix algebra, determinants, vector spaces, subspaces, linear independence, basis, inner products, and eigenvectors. While the text provides challenging problems that engage readers in the mathematical theory of linear algebra, it is written in an accessible and simple-to-grasp fashion appropriate for junior undergraduate students. An emphasis on logic, set theory, and functions exists throughout the book, and these topics are introduced early to provide students with a foundation from which to attack the rest of the material in the text. Linear Algebra includes accompanying material in the form of a companion website that features solutions manuals for students and instructors. Finally, the concluding chapter in the book includes discussions of advanced topics like generalized eigenvectors, Schur's Lemma, Jordan canonical form, and quadratic forms. Readers will also benefit from the inclusion of: A thorough introduction to logic and set theory, as well as descriptions of functions and linear transformations An exploration of Euclidean spaces and linear transformations between Euclidean spaces, including vectors, vector algebra, orthogonality, the standard matrix, Gauss-Jordan elimination, inverses, and determinants Discussions of abstract vector spaces, including subspaces, linear independence, dimension, and change of basis A treatment on defining geometries on vector spaces, including the Gram-Schmidt process Perfect for undergraduate students taking their first course in the subject matter, Linear Algebra will also earn a place in the libraries of researchers in computer science or statistics seeking an accessible and practical foundation in linear algebra.
This best-selling text provides a firm mathematical basis for the calculus of fuzzy concepts necessary for designing intelligent systems and a solid background for readers to pursue further studies and real-world a
Author: Hung T. Nguyen
Publisher: CRC Press
ISBN: 9781420057102
Category: Mathematics
Page: 440
View: 200
A First Course in Fuzzy Logic, Third Edition continues to provide the ideal introduction to the theory and applications of fuzzy logic. This best-selling text provides a firm mathematical basis for the calculus of fuzzy concepts necessary for designing intelligent systems and a solid background for readers to pursue further studies and real-world applications. New in the Third Edition: A section on type-2 fuzzy sets - a topic that has received much attention in the past few years Additional material on copulas and t-norms More discussions on generalized modus ponens and the compositional rule of inference Complete revision to the chapter on possibility theory Significant expansion of the chapter on fuzzy integrals Many new exercises With its comprehensive updates, this new edition presents all the background necessary for students and professionals to begin using fuzzy logic in its many-and rapidly growing- applications in computer science, mathematics, statistics, and engineering.
Consequently the book, while making an attractive first textbook for those who plan to specialise in logic, will be particularly valuable for mathematics and computer scientists whose primary interests lie elsewhere.
Author: P. T. Johnstone
Publisher: Cambridge University Press
ISBN: 0521336929
Category: Mathematics
Page: 110
View: 319
This short textbook provides a succinct introduction to mathematical logic and set theory, which together form the foundations for the rigorous development of mathematics. It will be suitable for all mathematics undergraduates coming to the subject for the first time. The book is based on lectures given at the University of Cambridge and covers the basic concepts of logic: first order logic, consistency, and the completeness theorem, before introducing the reader to the fundamentals of axiomatic set theory. There are also chapters on recursive functions, the axiom of choice, ordinal and cardinal arithmetic and the incompleteness theorems. Dr Johnstone has included numerous exercises designed to illustrate the key elements of the theory and to provide applications of basic logical concepts to other areas of mathematics. Consequently the book, while making an attractive first textbook for those who plan to specialise in logic, will be particularly valuable for mathematics and computer scientists whose primary interests lie elsewhere.
"In the reviewer's opinion, this is an excellent book, and in addition to its use as a textbook (it contains a wealth of exercises and examples) can be recommended to all who wish an introduction to mathematical logic less technical than ...
Author: Robert R. Stoll
Publisher: Dover Publications
ISBN: UOM:39015011132290
Category: Mathematics
Page: 512
View: 910
Set Theory and Logic is the result of a course of lectures for advanced undergraduates, developed at Oberlin College for the purpose of introducing students to the conceptual foundations of mathematics. Mathematics, specifically the real number system, is approached as a unity whose operations can be logically ordered through axioms. One of the most complex and essential of modern mathematical innovations, the theory of sets (crucial to quantum mechanics and other sciences), is introduced in a most careful concept manner, aiming for the maximum in clarity and stimulation for further study in set logic. Contents include: Sets and Relations — Cantor's concept of a set, etc. Natural Number Sequence — Zorn's Lemma, etc. Extension of Natural Numbers to Real Numbers Logic — the Statement and Predicate Calculus, etc. Informal Axiomatic Mathematics Boolean AlgebraInformal Axiomatic Set TheorySeveral Algebraic Theories — Rings, Integral Domains, Fields, etc. First-Order Theories — Metamathematics, etc. Symbolic logic does not figure significantly until the final chapter. The main theme of the book is mathematics as a system seen through the elaboration of real numbers; set theory and logic are seen s efficient tools in constructing axioms necessary to the system. Mathematics students at the undergraduate level, and those who seek a rigorous but not unnecessarily technical introduction to mathematical concepts, will welcome the return to print of this most lucid work. "Professor Stoll . . . has given us one of the best introductory texts we have seen." — Cosmos. "In the reviewer's opinion, this is an excellent book, and in addition to its use as a textbook (it contains a wealth of exercises and examples) can be recommended to all who wish an introduction to mathematical logic less technical than standard treatises (to which it can also serve as preliminary reading)." — Mathematical Reviews.
... A Mathematical Exposition Debarre, O.: Higher-Dimensional Algebraic Geometry Deitmar, A.: A First Course in Harmonic Analysis Demazure, M.: Bifurcations and Catastrophes Devlin, K.J.: Fundamentals of Contemporary Set Theory ...
Author: Shashi Mohan Srivastava
Publisher: Springer Science & Business Media
ISBN: 0387762779
Category: Mathematics
Page: 150
View: 331
This book provides a distinctive, well-motivated introduction to mathematical logic. It starts with the definition of first order languages, proceeds through propositional logic, completeness theorems, and finally the two Incompleteness Theorems of Godel.
Reviews of the first edition: This is a well-written book, based on very sound pedagogical ideas. It would be an excellent choice as a textbook for a 'transition' course. —Zentralblatt Math 'Proofs and Fundamentals' has many strengths.
Author: Ethan D. Bloch
Publisher: Springer Science & Business Media
ISBN: 1441971270
Category: Mathematics
Page: 358
View: 986
"Proofs and Fundamentals: A First Course in Abstract Mathematics" 2nd edition is designed as a "transition" course to introduce undergraduates to the writing of rigorous mathematical proofs, and to such fundamental mathematical ideas as sets, functions, relations, and cardinality. The text serves as a bridge between computational courses such as calculus, and more theoretical, proofs-oriented courses such as linear algebra, abstract algebra and real analysis. This 3-part work carefully balances Proofs, Fundamentals, and Extras. Part 1 presents logic and basic proof techniques; Part 2 thoroughly covers fundamental material such as sets, functions and relations; and Part 3 introduces a variety of extra topics such as groups, combinatorics and sequences. A gentle, friendly style is used, in which motivation and informal discussion play a key role, and yet high standards in rigor and in writing are never compromised. New to the second edition: 1) A new section about the foundations of set theory has been added at the end of the chapter about sets. This section includes a very informal discussion of the Zermelo– Fraenkel Axioms for set theory. We do not make use of these axioms subsequently in the text, but it is valuable for any mathematician to be aware that an axiomatic basis for set theory exists. Also included in this new section is a slightly expanded discussion of the Axiom of Choice, and new discussion of Zorn's Lemma, which is used later in the text. 2) The chapter about the cardinality of sets has been rearranged and expanded. There is a new section at the start of the chapter that summarizes various properties of the set of natural numbers; these properties play important roles subsequently in the chapter. The sections on induction and recursion have been slightly expanded, and have been relocated to an earlier place in the chapter (following the new section), both because they are more concrete than the material found in the other sections of the chapter, and because ideas from the sections on induction and recursion are used in the other sections. Next comes the section on the cardinality of sets (which was originally the first section of the chapter); this section gained proofs of the Schroeder–Bernstein theorem and the Trichotomy Law for Sets, and lost most of the material about finite and countable sets, which has now been moved to a new section devoted to those two types of sets. The chapter concludes with the section on the cardinality of the number systems. 3) The chapter on the construction of the natural numbers, integers and rational numbers from the Peano Postulates was removed entirely. That material was originally included to provide the needed background about the number systems, particularly for the discussion of the cardinality of sets, but it was always somewhat out of place given the level and scope of this text. The background material about the natural numbers needed for the cardinality of sets has now been summarized in a new section at the start of that chapter, making the chapter both self-contained and more accessible than it previously was. 4) The section on families of sets has been thoroughly revised, with the focus being on families of sets in general, not necessarily thought of as indexed. 5) A new section about the convergence of sequences has been added to the chapter on selected topics. This new section, which treats a topic from real analysis, adds some diversity to the chapter, which had hitherto contained selected topics of only an algebraic or combinatorial nature. 6) A new section called ``You Are the Professor'' has been added to the end of the last chapter. This new section, which includes a number of attempted proofs taken from actual homework exercises submitted by students, offers the reader the opportunity to solidify her facility for writing proofs by critiquing these submissions as if she were the instructor for the course. 7) All known errors have been corrected. 8) Many minor adjustments of wording have been made throughout the text, with the hope of improving the exposition.
Author: Willard Van Orman Quine
Publisher:
ISBN: OCLC:28834280
Category:
Page: 263
View: 492
In this new edition, many small and large changes have been made throughout the text. The main purpose of this new edition is to provide a healthy first introduction to model theory, which is a very important branch of logic.
Author: Shashi Mohan Srivastava
Publisher: Springer Science & Business Media
ISBN: 9781461457466
Category: Mathematics
Page: 198
View: 632
This is a short, modern, and motivated introduction to mathematical logic for upper undergraduate and beginning graduate students in mathematics and computer science. Any mathematician who is interested in getting acquainted with logic and would like to learn Gödel's incompleteness theorems should find this book particularly useful. The treatment is thoroughly mathematical and prepares students to branch out in several areas of mathematics related to foundations and computability, such as logic, axiomatic set theory, model theory, recursion theory, and computability. In this new edition, many small and large changes have been made throughout the text. The main purpose of this new edition is to provide a healthy first introduction to model theory, which is a very important branch of logic. Topics in the new chapter include ultraproduct of models, elimination of quantifiers, types, applications of types to model theory, and applications to algebra, number theory and geometry. Some proofs, such as the proof of the very important completeness theorem, have been completely rewritten in a more clear and concise manner. The new edition also introduces new topics, such as the notion of elementary class of structures, elementary diagrams, partial elementary maps, homogeneous structures, definability, and many more.
This book, presented in two parts, offers a slow introduction to mathematical logic, and several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions.
Author: Roman Kossak
Publisher: Springer
ISBN: 9783319972985
Category: Mathematics
Page: 186
View: 227
This book, presented in two parts, offers a slow introduction to mathematical logic, and several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions. Its first part, Logic Sets, and Numbers, shows how mathematical logic is used to develop the number structures of classical mathematics. The exposition does not assume any prerequisites; it is rigorous, but as informal as possible. All necessary concepts are introduced exactly as they would be in a course in mathematical logic; but are accompanied by more extensive introductory remarks and examples to motivate formal developments. The second part, Relations, Structures, Geometry, introduces several basic concepts of model theory, such as first-order definability, types, symmetries, and elementary extensions, and shows how they are used to study and classify mathematical structures. Although more advanced, this second part is accessible to the reader who is either already familiar with basic mathematical logic, or has carefully read the first part of the book. Classical developments in model theory, including the Compactness Theorem and its uses, are discussed. Other topics include tameness, minimality, and order minimality of structures. The book can be used as an introduction to model theory, but unlike standard texts, it does not require familiarity with abstract algebra. This book will also be of interest to mathematicians who know the technical aspects of the subject, but are not familiar with its history and philosophical background.
This is the first presentation in English of the book, which is widely used in Russian universities. In our country, the teaching of the main courses in mathematics is usually organized in the following way. The lectures are followed by ...
Author: Igor Lavrov
Publisher: Springer Science & Business Media
ISBN: 9781461501855
Category: Mathematics
Page: 282
View: 363
Problems in Set Theory, Mathematical Logic and the Theory of Algorithms by I. Lavrov & L. Maksimova is an English translation of the fourth edition of the most popular student problem book in mathematical logic in Russian. It covers major classical topics in proof theory and the semantics of propositional and predicate logic as well as set theory and computation theory. Each chapter begins with 1-2 pages of terminology and definitions that make the book self-contained. Solutions are provided. The book is likely to become an essential part of curricula in logic.
The book concludes with an outline of Godel's incompleteness theorem. Ideal for a one-semester course, this concise text offers more detail and mathematically relevant examples than those available in elementary books on logic.
Author: Angelo Margaris
Publisher: Courier Corporation
ISBN: 0486662691
Category: Mathematics
Page: 211
View: 306
"Attractive and well-written introduction." — Journal of Symbolic Logic The logic that mathematicians use to prove their theorems is itself a part of mathematics, in the same way that algebra, analysis, and geometry are parts of mathematics. This attractive and well-written introduction to mathematical logic is aimed primarily at undergraduates with some background in college-level mathematics; however, little or no acquaintance with abstract mathematics is needed. Divided into three chapters, the book begins with a brief encounter of naïve set theory and logic for the beginner, and proceeds to set forth in elementary and intuitive form the themes developed formally and in detail later. In Chapter Two, the predicate calculus is developed as a formal axiomatic theory. The statement calculus, presented as a part of the predicate calculus, is treated in detail from the axiom schemes through the deduction theorem to the completeness theorem. Then the full predicate calculus is taken up again, and a smooth-running technique for proving theorem schemes is developed and exploited. Chapter Three is devoted to first-order theories, i.e., mathematical theories for which the predicate calculus serves as a base. Axioms and short developments are given for number theory and a few algebraic theories. Then the metamathematical notions of consistency, completeness, independence, categoricity, and decidability are discussed, The predicate calculus is proved to be complete. The book concludes with an outline of Godel's incompleteness theorem. Ideal for a one-semester course, this concise text offers more detail and mathematically relevant examples than those available in elementary books on logic. Carefully chosen exercises, with selected answers, help students test their grasp of the material. For any student of mathematics, logic, or the interrelationship of the two, this book represents a thought-provoking introduction to the logical underpinnings of mathematical theory. "An excellent text." — Mathematical Reviews
Monograph 10, Programming Research Group, Oxford Univ. (1973) 487. ... Suppes: Axiomatic Set Theory (Dover, NY, USA 7 May 1973) 492. P.R. Suppes, S. Hill: A First Course in Mathematical Logic (Dover, July 1, 2002) 493.
Author: Dines Bjørner
Publisher: Springer Science & Business Media
ISBN: 9783540312888
Category: Computers
Page: 714
View: 633
The art, craft, discipline, logic, practice, and science of developing large-scale software products needs a believable, professional base. The textbooks in this three-volume set combine informal, engineeringly sound practice with the rigour of formal, mathematics-based approaches. Volume 1 covers the basic principles and techniques of formal methods abstraction and modelling. First this book provides a sound, but simple basis of insight into discrete mathematics: numbers, sets, Cartesians, types, functions, the Lambda Calculus, algebras, and mathematical logic. Then it trains its readers in basic property- and model-oriented specification principles and techniques. The model-oriented concepts that are common to such specification languages as B, VDM-SL, and Z are explained here using the RAISE specification language (RSL). This book then covers the basic principles of applicative (functional), imperative, and concurrent (parallel) specification programming. Finally, the volume contains a comprehensive glossary of software engineering, and extensive indexes and references. These volumes are suitable for self-study by practicing software engineers and for use in university undergraduate and graduate courses on software engineering. Lecturers will be supported with a comprehensive guide to designing modules based on the textbooks, with solutions to many of the exercises presented, and with a complete set of lecture slides.
A first course in mathematical logic and set theory is assumed, making this book suitable for advanced students and researchers.
Author: Arnold W. Miller
Publisher: Cambridge University Press
ISBN: 9781107168060
Category: Mathematics
Page: 134
View: 773
Since their inception, the Perspectives in Logic and Lecture Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. In this volume, the fourth publication in the Lecture Notes in Logic series, Miller develops the necessary features of the theory of descriptive sets in order to present a new proof of Louveau's separation theorem for analytic sets. While some background in mathematical logic and set theory is assumed, the material is based on a graduate course given by the author at the University of Wisconsin, Madison, and is thus accessible to students and researchers alike in these areas, as well as in mathematical analysis.
Mathematics. TAKEUTI/ZARING. Introduction to Axiomatic Set Theory. 2nd. ed. OxTOBY. Measure and Category. 2nd ed. SCHAEFFER. Topological Vector Spaces. HILTON/STAMMBACH. A Course in Homological Algebra. MAC LANE.
Author: T.Y. Lam
Publisher: Springer Science & Business Media
ISBN: 9781468404067
Category: Mathematics
Page: 397
View: 277
One of my favorite graduate courses at Berkeley is Math 251, a one-semester course in ring theory offered to second-year level graduate students. I taught this course in the Fall of 1983, and more recently in the Spring of 1990, both times focusing on the theory of noncommutative rings. This book is an outgrowth of my lectures in these two courses, and is intended for use by instructors and graduate students in a similar one-semester course in basic ring theory. Ring theory is a subject of central importance in algebra. Historically, some of the major discoveries in ring theory have helped shape the course of development of modern abstract algebra. Today, ring theory is a fer tile meeting ground for group theory (group rings), representation theory (modules), functional analysis (operator algebras), Lie theory (enveloping algebras), algebraic geometry (finitely generated algebras, differential op erators, invariant theory), arithmetic (orders, Brauer groups), universal algebra (varieties of rings), and homological algebra (cohomology of rings, projective modules, Grothendieck and higher K-groups). In view of these basic connections between ring theory and other branches of mathemat ics, it is perhaps no exaggeration to say that a course in ring theory is an indispensable part of the education for any fledgling algebraist. The purpose of my lectures was to give a general introduction to the theory of rings, building on what the students have learned from a stan dard first-year graduate course in abstract algebra.
A First Course In Mathematical Logic And Set Theory Pdf
Source: https://usakochan.net/download/a-first-course-in-mathematical-logic-and-set-theory/
Posted by: woodovesibly.blogspot.com

0 Response to "A First Course In Mathematical Logic And Set Theory Pdf"
Post a Comment